Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadh9547, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489372

RESUMO

Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.


Assuntos
Quimiocinas , Proteínas com Domínio MARVEL , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio MARVEL/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/terapia , Microambiente Tumoral
2.
Crit Rev Biochem Mol Biol ; 55(4): 322-353, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32633575

RESUMO

During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.


Assuntos
Carcinogênese/imunologia , Estresse do Retículo Endoplasmático/imunologia , Degradação Associada com o Retículo Endoplasmático/imunologia , Neoplasias/imunologia , Proteólise , Animais , Carcinogênese/patologia , Humanos , Neoplasias/patologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...